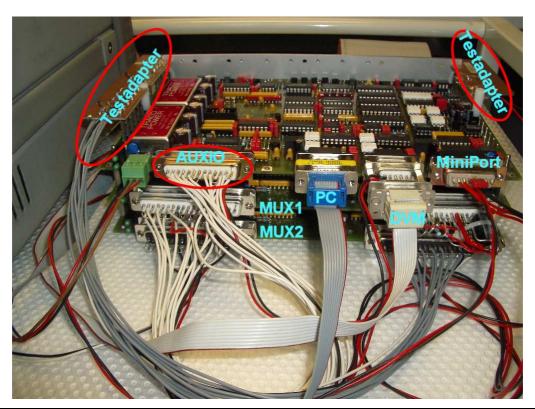
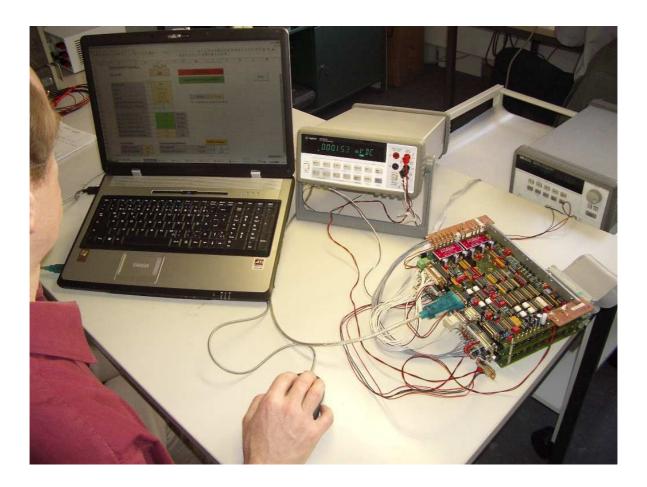
SMMU-05 Application-Note 22 SMMU Automatische Kalibrierung

Einsatzgebiet	Labor: Schaltungstest Produktionstest	
Anwendung	Funktionstest und Kalibrierung an komplexer	
	Flachbaugruppe	
	Hier: SMMU-Source-Measurement-Karte	
Schlüssel-Anforderungen	Einbindung eines externen Referenzmessgerätes (hier Agilent 34401A)	
	Funktionstest	
	Vielfältige Messfunktionen	
	Datenbank für Messergebnisse	
	Reporterstellung	
	Ansteuerung der Kalibrierfunktionen über die Test-SW	


Funktionstest, Abgleich und Kalibrierung der SMMU-Source-Measurement-Karte

Dies ist ein Beispiel für eine komplexe Funktionstest- und Kalibrieraufgabe hier dargestellt für den Funktionstest und die Kalibrierung der **SMMU-Source-Measurement-Karte.**


Dazu werden zwei 16-fach Multiplexerkarten MUX1 und MUX2 die zu kalibrierende SMMU. angesteckt. Über entsprechende Testadapter werden die verschiedenen System- und Referenzspannungen, sowie der AUXIO-Stecker an den Multiplexer angeschlossen.

Am Miniport wird das externe Agilent Referenz-Multimeter angeschlossen und über die zweite V24-Schnittstelle direkt von der zu kalibrierenden SMMU angesteuert. Damit können alle Messungen parallel intern und extern erfolgen. Die Programmierumgebung für Prüfsequenzen unterstützt das Agilent 34401A DMM transparent.

Die exakten Werte der Referenzspannungen werden dann als Abgleichwerte im Flash der SMMU abgelegt. Ein Abgleich über manuell einzustellende Trimmer entfällt damit vollständig. Alle Messergebnisse werden zur späteren Prüfdokument-Erstellung und statistischen Auswertung in einer Datenbasis gespeichert.

Hardware Hersteller:	PC-Software, Vertrieb und Projektunterstützung:
JOCHEN + GEORG FRANK	Dr. Markus Bär Pfarrgartenweg 8
INGENIEURBÜRO FÜR HARD & SOFTWARE	D-72119 Ammerbuch TEL. 07073 / 913291 info@Dr-Markus-Baer.de www.smmu.info
SMMU05-AppNote-022 SMMU-Kalibrierung.doc	Stand: 24/11/2010 19:19:00

Prüfablauf

Der ganze Prüfablauf wird durch ein Prüfprogramm in Visual-Basic for Applications (VBA) eingebettet in MS-Excel durchgeführt. Dabei werden innerhalb von wenigen Minuten hunderte von Messungen intern und mit dem externen Referenz-DMM durchgeführt, Kalibrierfaktoren berechnet und im Flash der SMMU permanent abgespeichert. Dies erspart gegenüber der früheren manuellen Kalibrierung einige Stunden an Arbeit und liefert außerdem ein vollständiges Prüfprotokoll, sowie eine Datenbank der Messdaten aller produzierten Geräte, mit der Prozessabweichungen erkannt werden können.

Prüfprotokoll

Alle Prüfergebnisse werden in einer **Datenbasis** abgelegt, die zur Protokollerstellung und für statistische Zwecke zur Verfügung steht.

TESTPROTOKOLL CTL274 Serial # 21

A				
Record #	-	56		
Datum		15-Aug-06		
Zeit		18:26:50		
Projekt		P4416		
Leiterplattenbezeichnung		CTL274B		
HW-Modification Record		4		
RD zw. CASE-GND		> 20	MOhm	
RD zw. CASE-U57.15		~ 2	MOhm	
RD zw. CASE-U53.15		~ 2	MOhm	
RD zw. CASE-GND24		~ 2	MOhm	
Versorgungsspannung:		24	V	
Stromaufnahme Leerlauf		186	mΑ	

Tester	G.Frank
✓ Abgleich in Fl	ash

Kontrolle:

LED1A blinkt?	ОК
LED1B schaltet?	ОК
BaudRateJumper	ОК

Versionsnummern

Abfrage MR	!HMR	4
Abfrage SW-Version	!VER	1,8

Systemspannungen Mit DVM gemessen :

P30	30065,57	mV
P15	15012,10	mV
P12	11958,63	mV
P5	5053,76	mV
P3V3	3289,86	mV
GND		mV
M08	-7940,05	mV
M12	-11986,03	mV
REFP2V4	2446,52	mV
REFP1V6	1631,90	mV
V24.0 Versorgung	5,7	V
V24.1 Versorgung	5,7	V

Mit Befehl !PLA später
abaofraat:

abgetragt:		
30113	mV	
15021	mV	
11967	mV	
5045	mV	
3290	mV	
0	mV	
-7934	mV	
-11972	m∨	

1633	mV

Abgleich DAC:

DAC0	
DAC1-1	
DAC1-2	

Abgleich ausführen

x =	5229	y =	19690
x =	355	y =	83
x =	891	y =	3489

Kontrolle ZDAC

3200,00 soll ist

320	1600	2880
305	1624	2923

Abgleich ADC1:

2110		x =	2446	y =	(
------	--	-----	------	-----	---

Referenzspannungen:

	DVIM-Messwert	
0 mV	-3,43	μV
100 mV	114,78	mV
1000 mV	1109,62	mV
2300 mV	2350,15	mV
10000 mV	10002,52	mV

Eingabewert im Flash		Einheit
	1148	100µV
	11096	100µV
	2350	mV
	10003	mV

Diverses:

Diverses.		
Temp intern	30	°C

CTL 274-Seriennummer

Einze	eltests:

Sollwert:

Emzenesis:	GOIIWEIT.	
Nullspannung	x <= 50	mV
Kurzschlussprüfung A	50	mΑ
Kurzschlussprüfung B	350	mΑ
Clamp-Diode	50005200	mV
Nullstromprüfung	x <= 40	mΑ
Nullstrom bei USVGN (0V) =	-1,48	mV
Nullstrom bei USVGN (-8V) =	-7943,53	mV
USVGP min	-100 +100	mV
USVGP max mit Save Power >	1215V	mV
USVGP max >	26400	mV
ILIMIT SVGN	450 500	mΑ

21				
Gemessen:				
-30,02	mV			
50,52	mA			
349,99	mA			
5033,54	mV			
31,38	mA			
103	nA			
126	nA			
-4,7	mV			
13070	mV			
26880	mV			
468,82	mA			

Prüfung der Spannungsbereiche:

	Sollwert:	DVM-Messwert:	
BUA1-MUA	100	10300,83	10µV
BUA2-MUA	1000	10013,17	100µV
BUA3-MUA	2500	2496,84	mV
BUA4-MUA	5000	5005,37	mV
BUA5-MUA	10000	9997,90	mV
BUA6-MUA	20000	20004,24	mV
BUA7-MUA	34000	3401,92	10mV

Antwort SMMU:

Messung POS	NEG	Einheit
10312	-10308	01: [10μV]
10012	-10009	02: [100μV]
2496	-2496	03: [mV]
5000	-5000	03: [mV]
9997	-9994	03: [mV]
19994	-19979	03: [mV]
3401	-3399	04: [10mV]

Prüfung der Strombereiche:

Sollwert: DAM-Messwert

BIA1-MIA	1000	1161,00	nA
BIA2-MIA	1000	1018,68	10nA
BIA3-MIA	1000	1015,08	100nA
BIA4-MIA	1000	1021,65	μA
BIA5-MIA	1000	1038,73	10µA
BIA6-MIA	1000	999,21	100µA
BIA7-MIA	400	3999,14	100µA

Antwort	SMMU:	Einheit

1115	10: [nA]
1020	11: [10nA]
1015	12: [100nA]
1021	13: [µA]
1039	14: [10µA]
999	15: [100µA]
4000	15: [100µA]

Kontaktierprüfung:

Erkennung Error 14	14	SSP weg
Erkennung Error 13	13	SSN weg
Erkennung Error 12	12	SN weg
Erkennung Error 11	11	SP weg
Erkennung Error 10	10	alles dran, DUT hochohmig
Erkennung Error 0	0	alles dran, DUT 100kOhm

Prüfung der Widerstandsbereiche:

Exakter Wert:

BRG1-MRG	0,9981	Ohm
BRG2-MRG	0,9981	Ohm
BRG3-MRG	0,9981	Ohm
BRG4-MRG	0,9981	Ohm
BRG5-MRG	0,9981	Ohm
BRG6-MRG	0,9981	Ohm
BRG7-MRG	9,972	Ohm
BRG8-MRG	100,02	Ohm
BRG9-MRG	1000,5	Ohm
BRG10-MRG	10.009	Ohm
BRG11-MRG	100.008	Ohm
BRG12-MRG	1.000.100	Ohm

Antwort	SMMI	I:	Fin	heit

Antwort SMMU:	Einneit
9981	19: [100μO]
9980	19: [100μO]
998	20: [mO]
998	20: [mO]
1000	20: [mO]
998	20: [mO]
9971	20: [mO]
10006	21: [10 mO]
10000	22: [100 mO]
10003	23: [Ohm]
10000	24: [10 Ohm]
9992	25: [100 Ohm]

Thermospannungsprüfung

Exakter Wert:

BRG4-MRG	mit Korrektur	998,1	mO
BRO4-MRO	ohne Korr.	998,1	mO

Antwort SMMU: Einheit

997	20: [mO]
1034	20: [mO]

CTL 274-Seriennummer

21

AUXIO-Stecker Prüfung

Systemspannungen Mit DVM gemessen :

P30	30067,34	mV
P12	11958,99	mV
P5	5052,55	mV
M12	-11988,36	mV
P5-Ext Pin 5	5049,25	mV
P5-Ext Pin 14	5049,29	mV

Analogeingänge Mit DVM gemessen :

AIN4	4002,51	mV
AIN5	4002,32	mV
AIN6	4002,51	mV
AIN7	4002,32	mV
TEMPEXT 10mV/K	1000,49	mV

Mit SMMU gemessen:	
3986	mV
3987	mV
3987	mV
3989	mV
99	°C

Digitalkanäle Mit SMMU gemessen :

QUIT IN Schaltspannung	9500	mV
/GUT Output OC	OK	
SA Input 5V mit 11K Pup	5047	mV
SB Input 5V mit 11K Pup	5046	mV
ENDIVB Output 5V CMOS	4,99	V
FRQ-FDUTDIVB	12,50	kHz

Mit SMMU gemessen :

0,46	mA	OK
0,46	mA	OK
0	V	
12	kHz	

Zusatztest Spannungsmessbereiche

Common Mode Rejection (Mittelwert über 10 SMMU-Messungen)

Messbereich			UCM = -8 V		UCM = +26 V		dB
BUA1	120	mV	0,089	mV	-0,05	mV	108
BUA2	1.2	>	0,05	mV	-0,02	mV	114
BUA3	3	V	0	mV	0	mV	#DIV/0!
BUA4	6	>	0	mV	0	mV	#DIV/0!
BUA5	12	V	0	mV	0	mV	#DIV/0!
BUA6	24	V	-0,2	mV	1	mV	89
BUA7	34	V	0	mV	0	mV	#DIV/0!

Legende:

Das Testsystem ist eine SMMU05-32 von Frank Das Prüfprogramm kommt von Bär Consulting Das externe DMM ist ein Agilent 34401A